
The Evolution of the DARWIN System

Joan D. Walton
NASA

Ames Research Center, MS 269-3
Moffett Field, CA 94035-1000

+1 650 604 2005

jdwalton@arc.nasa.gov

Robert E. Filman
Caelum Research Corporation

Ames Research Center, MS 269-2
Moffett Field, CA 94035-1000

+1 650 604 1250

rfilman@arc.nasa.gov

David J. Korsmeyer
NASA

Ames Research Center, MS 269-3
Moffett Field, CA 94035-1000

+1 650 604 3114

dkorsmeyer@arc.nasa.gov

ABSTRACT
DARWIN is a web-based system for presenting the results of
wind-tunnel testing and computational model analyses to
aerospace designers. DARWIN captures the data, maintains
the information, and manages derived knowledge (e.g.
visualizations) of large quantities of aerospace data. In
addition, it provides tools and an environment for distributed
collaborative engineering. We are currently constructing the
third version of the DARWIN software system. DARWIN’s
development history has, in some sense, tracked the
development of web applications. The 1995 DARWIN
reflected the latest web technologies—CGI scripts, Java
applets and a three-layer architecture—available at that time.
The 1997 version of DARWIN expanded on this base,
making extensive use of a plethora of web technologies,
including Java/JavaScript and Dynamic HTML. While more
powerful, this multiplicity has proven to be a maintenance
and development headache. The 2000 version of DARWIN
will provide a more stable and uniform foundation
environment, composed primarily of Java mechanisms. In
this paper, we discuss this evolution, comparing the strengths
and weaknesses of the various architectural approaches and
describing the lessons learned about building complex web
applications.

Keywords
WWW applications, DARWIN, wind-tunnel, distributed
analysis, collaborative engineering

1. INTRODUCTION
The Internet has transformed distributed applications from
unique singularities to ubiquitous commodities. Indeed,
many system-building components and subsystems exist
(e.g., CGI, Perl, Java, database systems, JavaScript, HTML,
DHTML, XML, servlets, CORBA, EJB, and a nearly
unbounded number of commercial tools). Building and

maintaining applications with these components can be
straightforward enough, if the application is simple enough.
However, complex distributed applications stress these web
development components in ways unanticipated by their
creators.

This paper describes the evolution of the DARWIN software
system and presents the lessons learned in that evolution with
respect to the software engineering of complex web-based
systems. Aerospace designers and engineers use DARWIN to
understand the results of wind-tunnel testing and numerical
model analyses of aircraft designs. Wind tunnel tests place a
physical model of a proposed aircraft in an enclosed space,
flow 200-600 mile-per-hour winds over the surface of that
model, and measure performance attributes such as lift, twist
and drag. Over the course of several months, a wind tunnel
experiment may measure close to 50,000 instants, each
recording up to a thousand variables. Numerical model
analyses employ techniques such as computational fluid
dynamics to evaluate these physical performance properties
from virtual designs. Numerical solutions are
computationally resource intensive and can generate gigabyte
size results.

DARWIN not only provides distributed, real-time remote
access to large volumes of data but also tools for data
analysis, visualization, and collaboration. DARWIN also
deals with such “real-world” issues as security requirements
and the semantic inconsistency endemic to extending legacy
systems (i.e. naming conventions and variations in meaning).

We are currently developing the third version of DARWIN.
DARWIN’s development history has tracked the
development of applications on the web. The original version
of DARWIN, built in 1995, integrated then “cutting-edge”
CGI scripts and Java applets with a Sybase database and
Unix file system. Over time, DARWIN evolved to
incorporate the latest advances in browser technology. The
current operational system, version 2 of DARWIN, also
extensively uses Java/JavaScript and Dynamic HTML to add
features and responsiveness to the user interface. The
multiplicity of mechanisms in DARWIN 2 makes it difficult
to maintain—the components themselves evolve as
DARWIN 2’s users desire increased functionality and as the
component manufacturers release new versions. The current
web-architecture nicely handles access to the aeronautics
data for distributed users, but in the future, DARWIN must
also handle retrieval of the data from distributed databases.

We are now in the process of designing version 3 of
DARWIN. We are guided by the maxim “less is more.” That
is, to produce a more effective and maintainable system, we
are driving to reduce the variety of development
mechanisms. DARWIN 3 will be entirely Java-based: Java
clients (applet or application) talking to Java servlets
communicating with data sources (databases and
applications) via Java/CORBA services. We believe this will
greatly simplify the overall development process.

2. BACKGROUND
The DARWIN system allows its users to access aerospace
data through a collection of displays and also to perform
various analysis functions. In a typical session, a DARWIN
user might perform the following tasks:

• Establish security context

After connecting to the DARWIN web server with a
Netscape web browser, the user logs in with her name
and password. Our facility serves a national community
of aerospace designers. Such customers are
unenthusiastic about granting competitors access to data
on their proprietary designs. To address these concerns,
all communications with the web server take place over
secure http, and the user is authenticated by IP address
in addition to password.

• Browse

The DARWIN home page provides overview screens
for the wind tunnel tests and computational fluid
dynamics solutions available (based upon user ID)
within the system. From these screens the user can see
what tests are in the system, get basic information about
the tests, and check the test’s bulletin boards where
messages and files are exchanged. Figure 1 shows an
example DARWIN home page with wind tunnel tests
displayed.

Figure 1: DARWIN Home page with wind tunnel tests
displayed.

An in-depth look at the data can be performed by
creating a dataset review. The user selects the data of
interest via the browsing screens and launches the
review screen. The review consists of two types of
tabular displays (data summary table and sequence

table) and a set of plots. The user can choose which
variables are displayed in the tables and in the plots.
Additional data points can be added to a review by
invoking the query screen and searching for points of
interest. Figure 2 shows a three-dimensional plot of
some wind-tunnel data.

Having selected the data to review and configured the
tables and plots, the user can save her work into a
DARWIN dataset. This structure retains enough
information for DARWIN to recreate the review screen
at a later time. Datasets are managed in a database on a
per user basis.

Figure 2: The DARWIN Review Screen showing a
three-dimensional plot

• Interact with the world

DARWIN is not just a database retrieval and
presentation mechanism. It also provides two kinds of
interaction: real-time monitoring of in-progress testing
and collaboration with colleagues. While a wind tunnel
test is in progress, users can monitor its progress via the
live screen. The live screen has the same tables and
plots as the review plus current status indicators,
message board, and shared files “shelf.” The tables and
plots are updated every 20 seconds to show the latest
collected data. Figure 3 shows the live screen in
operation.

Figure 3: Live Screen

DARWIN also provides several collaboration
mechanisms for keeping in touch with team members.
Users can post messages and files associated with a
particular test and can define mail groups for sending
group email and tracking the threaded conversations.

Wind tunnel test data are grouped into “time instants” or
points. For each point, the wind tunnel data acquisition
system collects a large volume of information about
conditions in the tunnel and on the model for a given
configuration. For example, pressure taps on the model can
reveal detail about the air pressure at specific spots on the
model, and pressure sensitive paint can produce a continuous
pressure map across the model’s surface. These measurement
systems produce files containing the results. Pressures
measured at specific locations are stored in text files.
Pressure sensitive paint results are recorded with a camera,
so those results are stored in image files. DARWIN deals
with a variety of file types, both text and binary.

The large volume of data associated with actual tests has led
us to a design incorporating a "meta" database. This database
is a relational database that stores information about the data
points. The meta-database holds both data applicable to the
experiment as a whole and variables on which users are
likely to want to search. For example, tunnel conditions such
as wind speed, temperature and angle of attack of the model
are data applicable to the entire experiment. Likewise,
overall lift and drag apply to the model as a whole. Because
users may want to find, for example, the data point with the
greatest drag, that information is also included in the meta-
database. The data contained in files produced by specialized
measurement systems are considered detail data. The meta-
database stores the locations of these files, and the time
points with which they are associated, so that the files can be
retrieved as needed.

Although DARWIN is an aerospace application, it is also a
generic application. What DARWIN does is (1) present to
distributed users large volumes of both numeric and image
data gathered from multiple sources and (2) provide
visualization tools for examining the data, collaboration tools
for working cooperatively with the data, and real-time
mechanisms for interacting with ongoing activities. The

DARWIN architecture and experience thus generalizes
across domains with similar (and simpler) problems.

3. DARWIN 1
The first version of DARWIN was developed in 1995 in the
infancy of web applications. The architecture combined a
classic three-tier approach with a fourth “file system” layer,
as is illustrated in Figure 4.

Figure 4: The three+ tier architecture of DARWIN 1.

The client user interface was based on the beta release of
Netscape Navigator 1.0 and was limited by that platform’s
lack of mechanisms for dynamic effects. The screens were
pure HTML. As new features such as frames, JavaScript, and
Java applets were added to Navigator, we rapidly
incorporated them into DARWIN to improve the user
experience. Whenever possible, we moved interfaces updates
to the client, thereby reducing communication and server
load, and providing the user with a more dynamic interface.
Thus, instead of producing static images on the server to
display plots of the data, a two-dimensional plotting applet
was developed in-house. The applet had the advantage of
being an encapsulated program running on the client, so, for
example, it responded to user imperatives to zoom or remove
display points locally. JavaScript functions were used toward
the same end: giving the interface the power to modify itself
without having to request new HTML pages from the web
server.

When unavoidable, web pages were constructed by CGI
scripts on the web server. Like many contemporary
applications (and currently), the scripts were written in Perl.
A Perl module was employed for communicating with the
Sybase database, and the SQL statements for retrieving
information from the meta-database were embedded directly
in the scripts. When the user requested information that
resided in a data file, the scripts would retrieve the location
of the file from the meta-database, fetch the file from the
indicated machine (via http), and build a display to present
the file’s contents. The files dealt with at that time were often
formats used only at our wind tunnel facility.

DARWIN 1 was the first system to allow remote access to
wind tunnel data. Even with the initial user interface
enhancements afforded by the availability of Java applets and
JavaScript, the client was still very light and fast. The
database contained data from only a few experiments, and its
response time was quick. DARWIN 1 provided few browsing
tools, so the amount of system code was small and easy to
track and maintain. The system was deployed and put to use
by engineers doing wind tunnel experiments. The users liked
and approved of the system, and the project received an
award from NASA for achieving broad industry acceptance
of its information system concepts. Once the engineers got a

feel for what could be done with DARWIN, they began to
request more features, notably the ability to compare data
across experiments and monitor tests in progress. They also
wanted avenues for collaborating with their peers. Rather
than shoehorn the new features into the original interface
design, we did a complete redesign and developed DARWIN
version 2.

4. DARWIN 2
By late 1997, a whole new generation of tools for enhancing
browser applications had become available. JavaScript had
matured into a full-featured language, and dynamic HTML
and stylesheets allowed increased control of the appearance
and behavior of web pages. These new tools were
enthusiastically applied in the development of DARWIN 2.
The result was a web application that looked and behaved
more like a stand-alone program than like traditional web
pages. Stylesheets allowed consistent control of colors and
fonts and provided exact positioning of graphical elements.
DHTML provided more tools for making the interface
dynamic and furthered the goal of minimizing calls to the
web server.

DARWIN 2 presented a comprehensive set of browsing
functions and allowed users to interact with their colleagues
at remote sites and monitor tests in progress. The new
monitoring live screen presented the most recent data in
tables and plots that were updated as new data came in.
(Pushing data to a browser is not a web primitive. The
updating was accomplished with an inconspicuous frame at
the bottom edge of the screen that loaded an updater CGI
script every 20 seconds. When the script detected new data,
it would reload the appropriate displays.) Live screen also
displayed a simple message board where users could post
notes to each other, and a shared “shelf” where files could be
posted and downloaded.

The live screen quickly became popular with our users.
Engineers at remote locations would leave the screen running
all day to stay abreast of the test’s progress. If they had
questions or comments about what they saw, they could
phone the test engineer at the tunnel. The shared file shelf
proved useful for securely transferring files from the tunnel.
thus, less secure connections to the tunnel systems, such as
ftp, could be disabled while the engineers retained access to
the data they required.

In addition, DARWIN 2 introduced the concept of “studies.”
Users could modify the standard views into the database and
save them along with associated files and hyperlinks into a
user-specific virtual file system. This allowed client location
independence for DARWIN access. It did not matter where,
in an approved IP range, the user accessed DARWIN
because all of the personalized studies and associated files
were always available.

Despite the advances in web components, limitations of the
browser and the web architecture required some design
compromises:

• Download delays

The user interface for the review screen in DARWIN 2
emulated a set of index tabs cards for various
information displays. The initial implementation loaded

all the displays on every client call. As some of the
displays were fairly complex, this proved too time
consuming. We were able to create more responsive
screens with DHTML by putting the displays into
“layers” and then hiding or showing the layers
appropriately. However, all the layers still had to be
built before the screen could be used, producing a front-
loading delay. The user had to wait, sometimes for a
significant amount of time, for the screen to finish
loading; but once done, the user could switch between
displays quickly and easily. In addition, the database
was now populated with several years' worth of
experimental data, so queries were slower as well.

• Architectural complexity

DARWIN was now a complex construction of
components of various types—mainly Java applets,
JavaScript objects, and CGI scripts—and these
components all needed to communicate with each other.
Anytime a query was directed at the database, a CGI
script had to be called to make the database connection,
execute the query and return the results. Communicating
those results to the other components without forcing
the whole screen to reload was tricky business as was
retrieving client-side state and saving it to the server.

Using the best web component for each task (e.g.,
DHTML for graphical precision, JavaScript for control
of DHTML elements, Java for plotting, and CGI scripts
for interacting with the database) simplified creating the
system but produced a difficult-to-maintain monster.
Tracking the successive releases of the browser and
components turned into a major task. In the future, once
the original developers had moved on, we anticipate it
would be difficult to find maintenance staff with a large
variety of skills to handle all these different packages.

• Client load

Integration of multiple browser components had made
the client system heavy. In particular, rendering of
DHTML and the large JavaScript components stressed
the browser and increased speed and memory
requirements on the client machine.

Table 1 illustrates the relative complexity of DARWIN 1 and
DARWIN 2. Version 2 does a lot more, but there is five and
a half times as much code in the system, with too many
different kinds of components. The Perl/CGI number for
DARWIN 2 includes 14,679 lines of imported packages.

DARWIN 1 DARWIN 2

Perl/CGI 8,693 52,406

HTML 2,161 3,436

JavaScript 130 16,398

Java 7,306 20,201

C, C++ 9,201

Gif’s, by instance 25 91

Total lines 18,315 101,642

Table 1: The comparative size of DARWIN 1 and 2

DARWIN 1 took 18 months for one programmer to develop.
DARWIN 2 took three programmers and a database designer
another 18 months to complete. The approach used for
development of these applications was (1) build a solid,
architectural design, (2) create a prototype of the system, and
(3) engage in an extended iterative design-and-code phase
where feedback from the users was incorporated promptly
into the system.

5. DARWIN 3
Success begets demands for greater functionality. The
requirements for DARWIN 3 are significantly more
demanding than the requirements for the previous version of
DARWIN in several areas:

• Remotely located data sources

DARWIN 1 and 2 provided access for geographically
distributed users to a centrally located meta-database
and data repository. With DARWIN 3, there will be
multiple distributed meta-databases and data
repositories. Dealing with distributed databases
increases system complexity and network latency.

• Distribution of user management tasks

In DARWIN 1 and 2, administrative tasks such as
creating new user accounts and groups and setting
access privileges were performed centrally. As tunnels
from other facilities join the DARWIN system, the
people in charge of those tunnels should naturally be in
control of who gets access to their data and also be
allowed to add their own people to the system.
Administration must become distributed, and the not-
necessarily-identical security policies of these different
domains will need to be supported.

• Full-featured collaboration tools

DARWIN 1 provided one view into the data. Users
could customize that view, but could not save it or
create multiple views. With DARWIN 2, users could
save their views, group them into "studies" and
associate files, such as spreadsheets or images, with
those studies. In DARWIN 3, the users need to be able
to share their work with colleagues by allowing access
to the views they have created while not violating the
access control rules established by the DARWIN
administrators.

The additional complexity of these tasks coupled with the
already over-taxed browser-based architecture of DARWIN 2
make re-engineering DARWIN a necessity. To reduce
complexity of the code, we are developing the architecture in
Figure 5.

Figure 5: The architecture of DARWIN 3

Where DARWIN 2 incorporated HTML, JavaScript,
DHTML, and Java applets all running in a browser, the
DARWN 3 client is a single, unified, stand-alone Java
application. The decision to give up the browser is a difficult
one. On one hand, browsers are ubiquitous and freely
available, which makes client installation fairly
straightforward. Browsers also handle certain security issues
automatically. On the other hand, every time Netscape
released a new version of Navigator, the system would break
or perform in unexpected ways. We considered making the
DARWIN client one large applet, but were hindered by the
lag time between the introduction of new versions of Java
and the incorporation of those versions into the Netscape
browser. At the time of this writing, implementing DARWIN
as an applet would either preclude our using the Java
Foundation Classes or require our users to install the Java 2
plug in, both undesirable outcomes. Implementing DARWIN
3 as a Java application will require more effort to perform
client installations, but we are hopeful that one of the
commercial tools available for this purpose will ease that
process.

On the server side, Perl CGI scripts will be replaced with
Java servlets. Servlets will let us naturally manage sessions
and track the session state. In addition, Java classes are
available to connect to databases with JDBC, make CORBA
requests, or access LDAP directories. CGI scripts spawn a
process for every http access and each database connection
made within a CGI script must login and log out of the
database. Servlets do not spawn child processes and can
access an open connection to the database, thus saving
significant processing time.

Keeping consistent policies among a collection of distributed
services can itself be a problem. We plan on using the Object
Infrastructure Framework (OIF) [2] to provide a dynamic
mechanism for inserting policies on security, reliability,
quality of service, accounting, debugging, performance
measurement and configuration management into the service
network. OIF generates Java injected behaviors on the
proxies of distributed services. This allows us to localize, for
example, the security requirements of each distributed
dataset to the particular requirements of that dataset. With
this system we can fine tune security to the content of the
results or simply impose, down the road, an accounting
policy on resource usage.

DARWIN 3 will be developed using the same process as was
used with DARWIN 1 and 2, preceded by a “tool
experimenting” phase. Conventional application prototyping
focuses on testing the user interface and the performance of
the system. In the rapidly changing domain of web
applications, however, significant time must also be spent on
experimenting with new tools and components, learning how
to use them, and determining whether they are effective
solutions to the problem at hand.

The DARWIN 3 system will provide its users with the tools
to perform many more data analysis and collaboration tasks
than were possible with DARWIN 1 or 2. Nevertheless,
because all the tools will be written in the same language,
managing the software development process will be simpler.
Similarly, we can dispense with the myriad instances of
special code for linking up components: Java classes
integrate seamlessly. We anticipate that this simplification
will allow us to focus our effort on modeling the complex
domain and inventing the appropriate interfaces for
exhibiting that domain, not fighting the inconsistencies of the
programming environment.

6. RELATED WORK
Within NASA several systems have been developed with
remote access to aerospace data. In 1994, NASA Ames
Research Center developed a system called remote access
wind tunnel (RAWT) [4]. In 1995, NASA Glenn Research
Center modified this concept to create remote access control
room (RACR). Both systems were Unix only and used a
commercial whiteboard program called InPerson for Silicon
Graphics machines and X-windows. No database of
information was developed, as the emphasis was remote
access and collaboration.

Similarly, several data and documentation tools were
developed at NASA Langley Research Center and NASA
Ames. These were PrISM, and ADAPT at Langley and
PostDoc at Ames. PrISM collected the wind tunnel data into
a database on a test by test basis and provided a robust query
capability to download the results to the user. No
presentation or naming consistency was developed under
PrISM. ADAPT and PostDoc were similar in that they were
early web-based document management systems. ADAPT
focussed upon creating secure access to encrypted
documents. Any data or documents were stored as an
encrypted file with the user required to have a decryption
helper application for the web browser to decrypt data to the
desktop. PostDoc emphasized capturing and translating
documents into Adobe PDF files to broad access to many
platforms. PostDoc only addressed security through a user id
and password scheme.

As DARWIN became operational, the U.S. Air Force’s
Arnold Engineering and Development Center held a meeting
in the spring of 1997 to assess NASA’s aerospace data
management tools. DARWIN was selected as the desired
model for the USAF to emulate and a project called
Integrated Test and Information System (ITIS) was initiated.
It is building a DARWIN compatible meta-database and an
in-house set of analysis tools.

Of course, use of the Internet for database access,
collaboration, and real-time monitoring has many
antecedents. For example, Evans and Rogers [1] report on
using Java applets and CORBA to reimplement (parts of) an
existing multi-user WWW application, replacing the existing
CGI scripts. They found the applet/CORBA combination to
be better at performing client-side applications, to be easier
to maintain, to be simpler to program (because of the ability
to retain server-side state), to be more straight forward to
deploy, and to provide greater responsiveness.

Ly [5] describes Netmosphere ActionPlan, a web-enabled
project management product. Architecturally, ActionPlan is a
pair of client applets linked to a Java-language server. A key
element of Netmosphere was the real-time, selective
notification mechanism for keeping information
synchronized.

Itschner, Pommerell and Rutishauser [3] report on the
GLASS system, which uses internet technology to monitor
remote embedded systems. GLASS proxies accumulate data
from embedded system monitoring devices and store this
information on the database of a server. Client applications,
running in browsers with Java applets, retrieve this data
through CGI scripts on the server.

Tesoriero and Zelkowitz [6] have developed the WebME
system, which uses a mediating query processor, metadata
database, and wrappers on the information repositories to
direct queries to the appropriate databases.

7. DISCUSSION
The common technology of the Internet and world-wide-web
markup languages, internet protocols, servers, Java, CORBA,
and so forth have taken the task of building complex
distributed applications from expeditions to outings. With
DARWIN, in a few short years we have transformed access
to data from wind tunnel experiments from a slow and
cumbersome process to an immediate, real-time, interactive,
collaborative experience. This has been accomplished by
relying on a large variety of Internet technologies. Like kids
in the candy store, we have applied each tool for its
particular strength. Moving forward in this process, we see
that a long-term maintainable system requires fewer
mechanisms. Although individually, technologies such as
DHTML, browsers, and CGI scripts simplify specific tasks,
integration and evolution requirements argue less is more,
and that being closer to the programming language level
(Java), particularly with a network-aware language like Java,
will make for a sustainable environment.

8. ACKNOWLEDGMENTS
The authors would like to thank the DARWIN development
team for building quality applications and making the project
a success.

9. BIOGRAPHIES
The authors are Research Scientists in the Computational
Sciences Division of the NASA Ames Research Center. Joan
D. Walton was the original programmer on the DARWIN
project and now leads a team of eight developers working on
distributed, internet-based applications. Before coming to
NASA five years ago, she built analytical software for

biotech and medical instruments. Ms. Walton received her
M. S. in Medical Information Sciences from Stanford
University.

Robert E. Filman is working on frameworks for developing
distributed applications. He has published in the areas of
software engineering, distributed computing, network
security, programming languages, artificial intelligence, and
human-machine interface. Dr. Filman received his Ph. D. in
Computer Science from Stanford University.

David J. Korsmeyer was one of the originators of DARWIN
in 1995. He is now a program manager for NASA’s
Information Technology Base Program and the Chief
Information Technology Architect for NASA’s Science and
Engineering Infrastructure. Dr. Korsmeyer has been at
NASA for nine years and received his Ph. D. in Aerospace
Engineering from the University of Texas at Austin.

10. REFERENCES
[1] Evans, E. and Rogers, D. Using Java Applets and

CORBA for Multi-User Distributed Applications.
IEEE Internet Computing 1, 3 (May 1997) 43-55.

[2] Filman, R. E., Barrett, S., Lee, D. D., and Linden,
T. Inserting Ilities by Controlling
Communications. To appear in Comm. ACM.

[3] Itschner, R., Pommerell, C., and Rutishauser, M.
GLASS: Remote Monitoring of Embedded
Systems in Power Engineering. IEEE Internet
Computing 2, 3 (May 1998) 46-52.

[4] Koga, D. J., Schreiner, J. A., Buning, P. G.,
Gilbaugh, B. L., and George, M. W. Integration of
Numerical and Experimental Wind Tunnel
(IofNEWT) and Remote Access Wind Tunnel
(RAWT) Programs of NASA. 19th AIAA
Advanced Measurement and Ground Testing
Technology Conference, New Orleans, LA, June
1996, AIAA-96-2248.

[5] Ly, E. Distributed Java Applets for Project
Management on the Web. IEEE Internet
Computing 1, 3 (May 1997) 21-27.

[6] Tesoriero, R., and Zelkowitz, M. A Web-based
Tool for Data Analysis and Presentation. IEEE
Internet Computing 2, 5 (September 1998) 63-69.

